This review summarizes the pathomorphological sequences of nephron loss in human diabetic nephropathy (DN). The relevant changes may be derived from two major derangements. First, a failure in the turnover of the glomerular basement membrane (GBM) based on an increased production of GBM components by podocytes and endothelial cells leading to the thickening of the GBM and accumulation of worn-out GBM in the mesangium.
View Article and Find Full Text PDFThe development of focal and segmental glomerulosclerosis (FSGS) as a consequence of glomerular hypertension resulting from arterial hypertension is widely considered a podocyte disease. However, the primary damage is encountered in the mesangium. In acute settings, mesangial cells disconnect from their insertions to the glomerular basement membrane, causing a ballooning of capillaries and severe changes of the folding pattern of the glomerular basement membrane, of the arrangement of the capillaries, and thereby of the architecture of the tuft.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2021
Following our previous reports on mesangial sclerosis and vascular proliferation in diabetic nephropathy (DN) (Kriz W, Löwen J, Federico G, van den Born J, Gröne E, Gröne HJ. 312: F1101-F1111, 2017; Löwen J, Gröne E, Gröne HJ, Kriz W. 317: F399-F410, 2019), we now describe the advanced stages of DN terminating in glomerular obsolescence and tubulointerstitial fibrosis based on a total of 918 biopsies.
View Article and Find Full Text PDFAlthough macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney.
View Article and Find Full Text PDF