Publications by authors named "W Korver"

Background: Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood.

Methods: Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in ex vivo and in vivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice.

View Article and Find Full Text PDF

Mast cells (MC) are key drivers of allergic and inflammatory diseases. Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 is an immunoregulatory receptor found on MCs. While it is recognized that engaging Siglecs with antibodies mediates inhibition across immune cells, the mechanisms that govern this agonism are not understood.

View Article and Find Full Text PDF

Mast cells are tissue-resident cells that contribute to allergic diseases, among others, due to excessive or inappropriate cellular activation and degranulation. Therapeutic approaches to modulate mast cell activation are urgently needed. Siglec-6 is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptor selectively expressed by mast cells, making it a promising target for therapeutic intervention.

View Article and Find Full Text PDF

Immunomodulation of mast cell (MC) activity is warranted in allergic and inflammatory diseases where MCs have a central role in pathogenesis. Targeting Siglec-8, an inhibitory receptor on MCs and eosinophils, has shown promising activity in preclinical and clinical studies. While the intracellular pathways that regulate Siglec-8 activity in eosinophils have been well studied, the signaling mechanisms that lead to MC inhibition have not been fully elucidated.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited.

View Article and Find Full Text PDF