Publications by authors named "W Knorr"

Twisted transition metal dichalcogenides (TMDs) present an intriguing platform for exploring excitons and their transport properties. By introducing a twist angle, a moiré superlattice forms, providing a spatially dependent exciton energy landscape. Based on a microscopic many-particle theory, we investigate in this work polaron-induced changes in exciton transport properties in the exemplary MoSe/WSe heterostructure.

View Article and Find Full Text PDF

The Farquhar et al. model of C(3) photosynthesis is frequently used to study the effect of global changes on the biosphere. Its two main parameters representing photosynthetic capacity, V(cmax) and J(max), have been observed to acclimate to plant growth temperature for single species, but a general formulation has never been derived.

View Article and Find Full Text PDF

We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2 degrees C (including simulations in which atmospheric composition is held constant, i.

View Article and Find Full Text PDF

The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world.

View Article and Find Full Text PDF

A gas chromatographic method using a HP-5 megabore capillary and nitrogen-phosphorus selective detection for the quantitative analysis of haloperidol (H) and reduced haloperidol (RH) in human serum or plasma is described. A 3-step liquid-liquid extraction is applied. The extraction yield of this procedure is 63% for haloperidol at 20 ng/ml.

View Article and Find Full Text PDF