A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively.
View Article and Find Full Text PDFGe-on-Si plasmonics holds the promise for compact and low-cost solutions in the manipulation of THz radiation. We discuss here the plasmonic properties of doped Ge bow-tie antennas made with a low-point cost CMOS mainstream technology. These antennas display resonances between 500 and 700 GHz, probed by THz time domain spectroscopy.
View Article and Find Full Text PDFLabel-free optical detection of biomolecules is currently limited by a lack of specificity rather than sensitivity. To exploit the much more characteristic refractive index dispersion in the mid-infrared (IR) regime, we have engineered three-dimensional IR-resonant silicon micropillar arrays (Si-MPAs) for protein sensing. By exploiting the unique hierarchical nano- and microstructured design of these Si-MPAs attained by CMOS-compatible silicon-based microfabrication processes, we achieved an optimized interrogation of surface protein binding.
View Article and Find Full Text PDFWe investigate the distribution of Sn in GeSn nano-heteroepitaxial clusters deposited at temperatures well exceeding the eutectic temperature of the GeSn system. The 600 °C molecular beam epitaxy on Si-patterned substrates results in the selective growth of GeSn nano-clusters having a 1.4 ± 0.
View Article and Find Full Text PDFWe report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 m) at low temperatures (0.
View Article and Find Full Text PDF