Publications by authors named "W KUENZEL"

Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus.

View Article and Find Full Text PDF

Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior.

View Article and Find Full Text PDF

The location of corticotropin-releasing hormone receptor 2 (CRH-R2) on thyrotropes within the avian anterior pituitary (APit) and its activation by different stressors indicate a possible communication between hypothalamo-pituitary-adrenal (HPA) and thyroid (HPT) axes. Therefore, an experiment was designed to 1) compare the timing of major components of the HPT axis to those of the HPA axis; 2) address whether stressors activating the HPA axis may simultaneously upregulate components of the HPT axis. Blood, brain, and APit were sampled from chicks prior to stress (control) and 15, 30, 60, 90, and 120 min following immobilization (IM) stress.

View Article and Find Full Text PDF

Woody breast (WB) myopathy results in poor muscle quality. The increasing incidence of WB over the last several years indicates a need for improved prediction or early diagnosis. We hypothesized that the use of body fluids, including blood, may be more suitable than breast muscle tissue in developing a minimally invasive diagnostic tool for WB detection.

View Article and Find Full Text PDF

Corticotropin releasing hormone (CRH) neurons located in the nucleus of hippocampal commissure (NHpC) have been proposed to be involved in the avian neuroendocrine regulation of stress and appeared to respond prior to CRH neurons in the hypothalamic paraventricular nucleus (PVN) when food deprivation stress was applied. Since the response of the NHpC was rapid and short-lived, was it regulated differentially from CRH neurons in the PVN? We, therefore, applied immobilization stress to test whether the NHpC response was stressor specific. Gene expression of CRH and stress-related genes in the NHpC, PVN, anterior pituitary (APit) as well as plasma corticosterone (CORT) were determined.

View Article and Find Full Text PDF