We numerically propose a dual-band absorber in the infrared region based on periodic elliptical graphene-black phosphorus (BP) pairs. The proposed absorber exhibits near-unity anisotropic absorption for both resonances due to the combination of graphene and BP. Each of the resonances is independently tunable via adjusting the geometric parameters.
View Article and Find Full Text PDFPurpose: This article explores the feasibility of using coupled electromagnetic and thermodynamic simulations to improve planning and control of hyperthermia treatments for cancer. The study investigates the usefulness of preplanning to improve heat localisation in tumour targets in treatments monitored with PRFS-based magnetic resonance thermal imaging (MRTI).
Methods: Heating capabilities of a cylindrical radiofrequency (RF) mini-annular phased array (MAPA) applicator were investigated with electromagnetic and thermal simulations of SAR in homogeneous phantom models and two human leg sarcomas.
In large multi-antenna systems, adaptive controllers can aid in steering the heat focus toward the tumor. However, the large number of sources can greatly increase the steering time. Additionally, controller performance can be degraded due to changes in tissue perfusion which vary non-linearly with temperature, as well as with time and spatial position.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2009
Purpose: Blood perfusion is a well-known factor that complicates accurate control of heating during hyperthermia treatments of cancer. Since blood perfusion varies as a function of time, temperature and location, determination of appropriate power deposition pattern from multiple antenna array Hyperthermia systems and heterogeneous tissues is a difficult control problem. Therefore, we investigate the applicability of a real-time eigenvalue model reduction (virtual source - VS) reduced-order controller for hyperthermic treatments of tissue with nonlinearly varying perfusion.
View Article and Find Full Text PDFRecent developments have reinvigorated clinical investigations of hyperthermia (HT) as a viable adjuvant treatment in the fight against cancer. Researchers are placing a greater emphasis on multi-modal approaches that include mild temperatures (40°C - 43°C) and standard therapies like radiation and chemotherapy than on achieving higher temperature treatments (43°C-45°C) which were pursued in the past. The emergence of robust computer simulation tools for accurate hyperthermia treatment planning has aided this resurgence by helping improve the quality of heating.
View Article and Find Full Text PDF