Cationic antimicrobial peptides pass across the outer membrane by interacting with negatively charged lipopolysaccharide (LPS), leading to outer membrane permeabilization in a process termed self-promoted uptake. Resistance can be mediated by the addition of positively charged arabinosamine through the action of the arnBCADTEF operon. We recently described a series of two-component regulators that lead to the activation of the arn operon after recognizing environmental signals, including low-Mg(2+) (PhoPQ, PmrAB) or cationic (ParRS) peptides.
View Article and Find Full Text PDFAs multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipid A of lipopolysaccharide (LPS) is a key component of this adaptive peptide resistance, but to date, the regulatory mechanism underlying peptide regulation in P.
View Article and Find Full Text PDFMicrobiology (Reading)
March 2009
Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of phoQ caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.
View Article and Find Full Text PDFThe Gram-negative opportunistic pathogen Pseudomonas aeruginosa ubiquitously inhabits soil and water habitats and also causes serious, often antibiotic resistant, infections in immunocompromised patients (e.g. cystic fibrosis).
View Article and Find Full Text PDFPseudomonas aeruginosa is an important opportunistic pathogen that causes infections that can be extremely difficult to treat due to its high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It is demonstrated here that the psrA gene, encoding a transcriptional regulator, was upregulated in response to subinhibitory concentrations of cationic antimicrobial peptides. Compared to the wild type and the complemented mutant, a P.
View Article and Find Full Text PDF