Hydrothermal (HT) treatment of seeds from Chinese privet (Ligustrum sinense), a non-native and invasive species in the southeastern United States, was examined with respect to the generation of gas-phase and semi-volatile organic chemicals of industrial importance from a lipid-rich biomass resource. Aqueous seed slurries were transformed into biphasic liquid systems comprised of a milky aqueous phase overlain by a black organic layer. Present in the headspace were elevated levels of CO(2) and acetic acid.
View Article and Find Full Text PDF1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells.
View Article and Find Full Text PDFThe United States and the European Union each generate around 6900 million dry tons of sewage sludge annually. This is disposed of by land application, landfilling, incineration and other approaches. Reductive hydrothermal (HT) treatment refers here to simple aqueous systems heated and pressurized above 300 degrees C/100 bar under anoxic and/or reducing conditions.
View Article and Find Full Text PDFBenzothiazole (BT) is a natural and synthetic compound occurring in aquatic sediments and wastewater. The purpose of this work was to investigate BT biogeochemistry in controlled Eh/pH microcosms (CEPMs) containing estuarine sediments of different particle sizes (coarse, intermediate, fine) under oxidized and reduced conditions vs. killed controls, and tide simulation mesocosms (TSMs) containing plants and meiofauna under well-drained (oxidized), consistently saturated/flooded (reduced), and tidal (alternating oxidized/reduced) conditions.
View Article and Find Full Text PDFJ Environ Qual
January 2004
This work addressed effects of hydrology on biogeochemical processes relevant to pollutant chemical transformation in wetland sediments. Microcosms were designed to impose three hydrologic conditions on salt marsh sediments: (i) drained-oxidized redox potenial (Eh); (ii) flooded-reduced Eh and, (iii) diurnal tide-oscillating Eh. The test chemicals were N- and/or S-heterocycles (NSHs) including quinoxaline (1,4-benzodiazine), 2-methylquinoxaline(2-methyl-1,4-benzodiazine), 2,3-dimethylquinoxalinen (2,3-dimethyl-1,4-benzodiazine), phenazine (2,3,5,6-dibenzo-1,4-diazine), acridine (2,3,5,6-dibenzopyridine), dibenzothiophene (2,3,5-dibenzothiophene), phenothiazine (dibenzo-1,4-thiazine), and phenanthridine (2,3-benzoisoquinoline).
View Article and Find Full Text PDF