Publications by authors named "W J Vredenberg"

We provide here a brief Tribute to Christiaan Sybesma (1928-2018), a highly respected biophysicist of our time. We remember him by giving a brief highlight of his life and a glimpse of his outstanding contributions in photosynthesis. He was a charming and highly respected scientist of our time.

View Article and Find Full Text PDF

Paper describes principles and application of a novel routine that enables the quantitative analysis of the photochemical O-J phase of the variable fluorescence F v associated with the reversible photo-reduction of the secondary electron acceptor QA of photosystem II (PSII) in algae and intact leaves. The kinetic parameters that determine the variable fluorescence F (PP)(t) associated with the release of photochemical quenching are estimated from 10 µs time-resolved light-on and light-off responses of F v induced by two subsequent light pulses of 0.25 (default) and 1000 ms duration, respectively.

View Article and Find Full Text PDF

This study reports on kinetics of the fluorescence decay in a suspension of the alga Scenedesmus quadricauda after actinic illumination. These are monitored as the variable fluorescence signal in the dark following light pulses of variable intensity and duration. The decay reflects the restoration of chlorophyll fluorescence quenching of the photosystem II (PSII) antennas and shows a polyphasic pattern which suggests the involvement of different processes.

View Article and Find Full Text PDF

This paper describes experiments on transient changes in chlorophyll a fluorescence in traps of the carnivorous plant Venus flytrap (Dionaea muscipula) that occur in association with mechanical stimulation of trigger hairs and propagation of action potentials (APs). The experiments show the following reproducible effects of APs on the fluorescence induction (Kautsky-, or OJIPSMT curve) in a 100 s low intensity light pulse (i) no change in the OJ phase attributed to release of photochemical quenching, (ii) a small enhancement, if at all of increase in the thermal JIP phase, (iii) a two- to threefold deceleration of the fluorescence decline (quenching) during the PSMT phase in the 2-100 s time range, and (iv) a transient 15-50% increase in variable fluorescence within ~20 s under steady state light condition with, after ~80 s, a 10% undershoot that reverses in several tens of seconds to the original steady state. The results are discussed in terms of a hypothesis that the fluorescence decline during the SMT phase of the Kautsky induction curve, attributed to NPQ, is caused by the Δμ(H+)-driven increase in proton conductance of the CF(o) channel of the ATPase during its activation.

View Article and Find Full Text PDF

Chlorophyll fluorescence induction curves induced by an actinic pulse of red light follow different kinetics in dark-adapted plant leaves and leaves preilluminated with far-red light. This influence of far-red light was abolished in leaves infiltrated with valinomycin known to eliminate the electrical (Δφ) component of the proton-motive force and was strongly enhanced in leaves infiltrated with nigericin that abolishes the ΔpH component. The supposed influence of ionophores on different components of the proton motive force was supported by differential effects of these ionophores on the induction curves of the millisecond component of chlorophyll delayed fluorescence.

View Article and Find Full Text PDF