Publications by authors named "W J VAN DE Wetering"

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Enteroendocrine cells (EECs) are gut epithelial cells that respond to intestinal contents by secreting hormones, including the incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory protein (GIP), which regulate multiple physiological processes. Hormone release is controlled through metabolite-sensing proteins. Low expression, interspecies differences, and the existence of multiple EEC subtypes have posed challenges to the study of these sensors.

View Article and Find Full Text PDF
Article Synopsis
  • The conjunctival epithelium has two key cell types: goblet cells that produce mucus and keratinocytes that secrete water, with keratinocytes presenting mucins on their surface.
  • Research involves long-term organoid cultures of human and mouse conjunctiva, revealing essential gene expression and identification of conjunctival stem cells.
  • The study also explores viral infections (HSV1, hAdV8, SARS-CoV-2) in conjunctival cultures, demonstrating treatment options for some infections and documenting gene expression changes induced by these viruses, highlighting the potential for organoid transplantation to study conjunctival health and disease.
View Article and Find Full Text PDF

Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood.

View Article and Find Full Text PDF

Extracellular histones are cytotoxic molecules involved in experimental acute kidney injury. In patients receiving a renal transplant from donors after circulatory death, who suffer from additional warm ischemia, worse graft outcome is associated with higher machine perfusate extracellular histone H3 concentrations. We now investigated temperature-dependent extracellular histone release in an ex vivo porcine renal perfusion model, and subsequently studied histone release in the absence and presence of non-anticoagulant heparin.

View Article and Find Full Text PDF