Publications by authors named "W J Nawrocki"

Article Synopsis
  • - Non-photochemical quenching (NPQ) is crucial for protecting the photosynthesis process in many plants and algae, helping combat photoinhibition, especially in harsh environments.
  • - Chlorella ohadii, a green micro-alga that thrives in intense desert sunlight, does not rely on NPQ; instead, it reduces light absorption by cutting down its photosystem II antenna.
  • - This micro-alga also accumulates antioxidants to combat reactive oxygen species (ROS) and enhances cyclic electron flow, effectively preventing oxidative damage in high-light conditions.
View Article and Find Full Text PDF

Chlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis.

View Article and Find Full Text PDF

Nonphotochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ is abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 is a pH sensor and switches to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet.

View Article and Find Full Text PDF

Drought is a major abiotic stress that impairs plant growth and development. Despite this, a comprehensive understanding of drought effects on the photosynthetic apparatus is lacking. In this work, we studied the consequences of 14-d drought treatment on Arabidopsis thaliana.

View Article and Find Full Text PDF

While photosynthesis transforms sunlight energy into sugar, aerobic and anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activities. These processes take place within one cell across several compartments, however it remains largely unexplored how they interact with one another. Here we report that the weak acids produced during fermentation down-regulate both photosynthesis and aerobic respiration.

View Article and Find Full Text PDF