Publications by authors named "W J Lemon"

Article Synopsis
  • WHaloCaMP is a new, bright calcium indicator that can be genetically targeted and multiplexed, allowing for simultaneous imaging of multiple signals in biological tissues.
  • It works by using a dye-ligand that changes fluorescence based on calcium binding, significantly increasing brightness and fluorescence lifetime for better imaging quality.
  • The tool has been successfully used in live imaging of calcium responses in various organisms, including flies, mice, and zebrafish larvae, demonstrating its versatility and effectiveness for studying cellular physiology.
View Article and Find Full Text PDF

Genetically encoded fluorescent calcium indicators have revolutionized neuroscience and other biological fields by allowing cellular-resolution recording of physiology during behavior. However, we currently lack bright, genetically targetable indicators in the near infrared that can be used in animals. Here, we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains that can be genetically targeted to specific cell populations.

View Article and Find Full Text PDF

We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.

View Article and Find Full Text PDF

Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 μM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution.

View Article and Find Full Text PDF

At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM).

View Article and Find Full Text PDF