Publications by authors named "W J Krzyzosiak"

Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene encoding the ataxin-3 protein. Despite extensive research the exact pathogenic mechanisms of SCA3 are still not understood in depth. In the present study, to gain insight into the toxicity induced by the expanded CAG repeats in SCA3, we comprehensively investigated repeat-associated non-ATG (RAN) translation in various cellular models expressing translated or non-canonically translated ATXN3 sequences with an increasing number of CAG repeats.

View Article and Find Full Text PDF

Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington's disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is autosomal-dominant neurodegenerative disease caused by an expansion of polyglutamine-encoding CAG repeats in the ATXN3 gene. Here we established IBCHi002-A induced pluripotent stem cells (iPSCs) line generated from SCA3 patient fibroblasts by using non-integrative Sendai-virus delivery system of four reprogramming factors. This cellular model provides a valid platform for study SCA3 pathogenesis and potential therapies for this so far incurable disease.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short, non-coding post-transcriptional gene regulators. In mammalian cells, mature miRNAs are produced from primary precursors (pri-miRNAs) using canonical protein machinery, which includes Drosha/DGCR8 and Dicer, or the non-canonical mirtron pathway. In plant cells, mature miRNAs are excised from pri-miRNAs by the DICER-LIKE1 (DCL1) protein complex.

View Article and Find Full Text PDF

MicroRNA (miRNA)-mediated crosstalk between coding and non-coding RNAs of various types is known as the competing endogenous RNA (ceRNA) concept. Here, we propose that there is a specific variant of the ceRNA language that takes advantage of simple sequence repeat (SSR) wording. We applied bioinformatics tools to identify human transcripts that may be regarded as repeat-associated ceRNAs (raceRNAs).

View Article and Find Full Text PDF