Publications by authors named "W J Hopkins"

Introduction: Meta-analysts have found that high-intensity interval training (HIIT) improves physical performance, but limited evidence exists regarding its effects on highly trained athletes, measures beyond maximum oxygen uptake ( O), and the moderating effects of different types of HIIT. In this study, we present meta-analyses of the effects of HIIT focusing on these deficits.

Methods: The effects of 6 types of HIIT and other moderators were derived from 34 studies involving highly trained endurance and elite athletes in percent units via log-transformation from separate meta-regression mixed models for sprint, time-trial, aerobic/anaerobic threshold, peak speed/power, repeated-sprint ability, O, and exercise economy.

View Article and Find Full Text PDF

Broca's and Wernicke's areas are comprised of Brodmann areas 44, 45 and 22 in the human brain. Because of their roles in higher cognitive and linguistic function, there has been historical and contemporary interest in comparative studies on the morphology and cytoarchitectonic organization in Broca's and Wernicke's between primate species. One challenge to comparative morphological studies between human and nonhuman primates for Broca's and Wernicke's areas is the absence in homologous sulci used to define these regions.

View Article and Find Full Text PDF

Objectives: Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates.

View Article and Find Full Text PDF

Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left.

View Article and Find Full Text PDF

Introduction: Our recent meta-analyses have demonstrated that high-intensity interval training (HIIT) causes a range of mean changes in various measures and predictors of endurance and sprint performance in athletes. Here, we extend the analyses to relationships between mean changes of these measures and consider implications for understanding and improving HIIT that were not apparent in the previous analyses.

Methods: The data were mean changes from HIIT with highly trained endurance and elite other (mainly team sport) athletes in studies where two or more measures or predictors of performance were available.

View Article and Find Full Text PDF