Publications by authors named "W J Hartley"

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.

View Article and Find Full Text PDF
Article Synopsis
  • Non-ferrous smelting, especially copper (Cu) smelting, significantly contributes to heavy metal(loid) pollution in soil, posing serious health risks globally.
  • A meta-analysis of 189 studies from 1993 to 2023 revealed that Cu smelting sites lead to a dramatic increase in soil heavy metal concentrations, with Cu, Cd, and As being the primary pollutants.
  • The study identified land use type as a key factor influencing heavy metal levels, noting that non-agricultural land has a greater effect than agricultural land and highlighted that pollution decreases with distance from smelting sites.
View Article and Find Full Text PDF

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/HO modified biochar (Fe@HO-BC) and Sb-oxidizing bacteria (Bacillus sp.

View Article and Find Full Text PDF

Regulating alkalinity is the key process to eliminating environmental risk and implementing sustainable management of bauxite residue. Nevertheless, continuous release of free alkali from the solid phase (mainly sodalite and cancrinite) is a major challenge for long-term stability of alkalinity in amended bauxite residue. In order to understand the dissolution behavior of sodalite and cancrinite, their dissolution kinetics under simulated pH conditions of 8, 9 and 10 were investigated.

View Article and Find Full Text PDF

Magnetic biochar has been widely used in potentially toxic elements (PTEs) polluted soils due to its magnetic separation capability and synchronous immobilization for multiple metals. However, the contribution of magnetic biochar to soil dissolve organic material (SDOM) and its binding behavior with PTEs needs to be further clarified prior to its remediation application on lead smelting sites. In this study, multi-spectral techniques of excitation-emission matrix (EEM) fluorescence spectroscopy and two-dimensional FTIR correlation spectroscopy (2D-FTIR-COS) were used to explore the evolution characteristics of SDOM in the lead smelting site under the remediation of magnetic biochar, and to further analyze its affinity and binding behavior with Pb and As.

View Article and Find Full Text PDF