Publications by authors named "W J Elliot"

The WEPPcloud interface is a new online decision-support tool for the Water Erosion Prediction Project (WEPP) model that facilitates data preparation and model runs, and summarizes model outputs into tables and maps that are easily interpretable by users. The interface can be used by land and water managers in United States, Europe, and Australia interested in simulating streamflow, sediment and pollutant loads from both undisturbed and disturbed (e.g.

View Article and Find Full Text PDF

The 2019/2020 Australian bushfires (or wildfires) burned the largest forested area in Australia's recorded history, with major socio-economic and environmental consequences. Among the largest fires was the 280 000 ha Green Wattle Creek Fire, which burned large forested areas of the Warragamba catchment. This protected catchment provides critical ecosystem services for Lake Burragorang, one of Australia's largest urban supply reservoirs delivering ~85% of the water used in Greater Sydney.

View Article and Find Full Text PDF

The Water Erosion Prediction Project (WEPP) model was applied to seven paired, nested watersheds within the Mica Creek Experimental Watershed located in northern Idaho, USA. The goal was to evaluate the ability of WEPP to simulate the direct and cumulative effects of clear-cutting and partial-cutting (50% canopy removal) on water and sediment yield. WEPP was modified to better represent changes in the Leaf Area Index during post-harvest forest vegetative recovery.

View Article and Find Full Text PDF

Failure of small-caliber grafts, used as bypass or reconstructive grafts in cardiovascular treatments, is often caused by thrombosis and stenosis. We have developed a multilayered, compliant graft with an electrospun heparin-encapsulated core and collagen-chitosan shell. Herein, the performances of acellular and cell-seeded grafts were evaluated in adult sheep for preclinical assessment.

View Article and Find Full Text PDF

This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of δ(2)H = 7.

View Article and Find Full Text PDF