Publications by authors named "W J De Wet"

Prolonged exposure to the galactic cosmic ray (GCR) environment is a potentially limiting factor for manned missions in deep space. Evaluating the risk associated with the expected GCR environment is an essential step in planning a deep space mission. This requires an understanding of how the local interstellar spectrum is modulated by the heliospheric magnetic field (HMF) and how observed solar activity is manifested in the HMF over time.

View Article and Find Full Text PDF

We have invented a new method for detecting solar particle events using data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Using a simple function of the total particle detection rates from four of CRaTER's six detectors, we can precisely identify solar energetic particle event periods in the CRaTER data archive. During solar-quiet periods we map the distribution of a mare-associated mixture of elements in the lunar regolith using this new method.

View Article and Find Full Text PDF

In this work, the radiation environment on the Martian surface, as produced by galactic cosmic radiation incident on the atmosphere, is modeled using the Monte Carlo radiation transport code, High Energy Transport Code-Human Exploration and Development in Space (HETC-HEDS). This work is performed in participation of the 2016 Mars Space Radiation Modeling Workshop held in Boulder, CO, and is part of a larger collaborative effort to study the radiation environment on the surface of Mars. Calculated fluxes for neutrons, protons, deuterons, tritons, helions, alpha particles, and heavier ions up to Fe are compared with measurements taken by Radiation Assessment Detector (RAD) instrument aboard the Mars Science Laboratory over a period of 2 months.

View Article and Find Full Text PDF

The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations.

View Article and Find Full Text PDF

NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences.

View Article and Find Full Text PDF