The cluster of microcystin synthetase genes from Anabaena strain 90 was sequenced and characterized. The total size of the region is 55.4 kb, and the genes are organized in three putative operons.
View Article and Find Full Text PDFThe patB gene product is required for growth and survival of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 in the absence of combined nitrogen. A patB::gfp fusion demonstrated that this gene is expressed exclusively in heterocysts.
View Article and Find Full Text PDFThe gene hetN encodes a putative oxidoreductase that is known to suppress heterocyst differentiation when present on a multicopy plasmid in Anabaena sp. PCC 7120. To mimic the hetN null phenotype and to examine where HetN acts in the regulatory cascade that controls heterocyst differentiation, we replaced the native chromosomal hetN promoter with the copper-inducible petE promoter.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2001
Heterocyst differentiation in the filamentous cyanobacterium Anabaena PCC 7120 requires a functional hetR gene. Increased expression of the hetR gene is seen in developing and mature heterocysts in response to fixed nitrogen limitation. We mapped four likely transcriptional start sites for hetR and identified a specific transcript that is positively autoregulated.
View Article and Find Full Text PDFAnabaena strain 90 produces three hepatotoxic heptapeptides (microcystins), two seven-residue depsipeptides called anabaenopeptilide 90A and 90B, and three six-residue peptides called anabaenopeptins. The anabaenopeptilides belong to a group of cyanobacterial depsipeptides that share the structure of a six-amino-acid ring with a side-chain. Despite their similarity to known cyclic peptide toxins, no function has been assigned to the anabaenopeptilides.
View Article and Find Full Text PDF