The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.
View Article and Find Full Text PDFAims: Although the neuroanatomical distribution of tau and amyloid-β is well studied in Alzheimer's disease (AD) (non)-amnestic clinical variants, that of neuroinflammation remains unexplored. We investigate the neuroanatomical distribution of activated myeloid cells, astrocytes, and complement alongside amyloid-β and phosphorylated tau in a clinically well-defined prospectively collected AD cohort.
Methods: Clinical variants were diagnosed antemortem, and brain tissue was collected post-mortem.
The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns.
View Article and Find Full Text PDFBackground And Objectives: In Parkinson disease (PD), α-synuclein spreading through connected brain regions leads to neuronal loss and brain network disruptions. With diffusion-weighted imaging (DWI), it is possible to capture conventional measures of brain network organization and more advanced measures of brain network resilience. We aimed to investigate which neuropathologic processes contribute to regional network topologic changes and brain network resilience in PD.
View Article and Find Full Text PDF