We applied reaction microscopy to elucidate fast non-adiabatic dissociation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV with synchrotron radiation. For the very rare D+ + O+ + D breakup channel, the particle momenta, angular, and energy distributions of electrons and ions, measured in coincidence, reveal distinct electronic dication states and their dissociation pathways via spin-orbit coupling and charge transfer at crossings and seams on the potential energy surfaces. Notably, we could distinguish between direct and fast sequential dissociation scenarios.
View Article and Find Full Text PDFIntroduction: Intraosseous schwannomas or neurilemomas are rare benign neoplasms. Total resection of the intraosseous schwannoma is considered risky in immunocompromised patients, thus minimally invasive vertebroplasty was conducted in this study.
Case Report: In this case, we presented A 40-year-old male presented with intermittent back pain for the last two years.
We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path-OD+: a1Δ or b1Σ+ → A 3Π → X 3Σ- → B 3Σ--involving a combination of spin-orbit and non-adiabatic charge transfer transitions is determined.
View Article and Find Full Text PDFWe present the relaxation dynamics of deuterated water molecules autoionization, initiated by the absorption of a 61 eV photon, producing the very rare D + O + D breakup channel. We employ the COLd target recoil ion momentum spectroscopy method to measure the 3D momenta of the ionic fragments and emitted electrons from the dissociating molecule in coincidence. We interpret the results using the potential energy surfaces extracted from multi-reference configuration interaction calculations.
View Article and Find Full Text PDFThe double photoionization of a molecule by one photon ejects two electrons and typically creates an unstable dication. Observing the subsequent fragmentation products in coincidence can reveal a surprisingly detailed picture of the dynamics. Determining the time evolution and quantum mechanical states involved leads to deeper understanding of molecular dynamics.
View Article and Find Full Text PDF