Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDFA drug-drug interaction (DDI) study was conducted to evaluate the effect of icenticaftor (QBW251) on the pharmacokinetics (PK) of a 5-probe cytochrome P450 (CYP) substrate cocktail, guided by in vitro studies in human hepatocytes and liver microsomes. Another DDI study investigated the effect of icenticaftor on the PK and pharmacodynamics (PD) of a monophasic oral contraceptive (OC) containing ethinyl estradiol (EE) and levonorgestrel (LVG) in premenopausal healthy female subjects. The static-mechanistic DDI assessment indicated that icenticaftor may moderately induce the metabolic clearance of co-medications metabolized by CYP3A4 (area under the concentration-time curve [AUC] ratio: 0.
View Article and Find Full Text PDFGlycogen synthase kinase 3β (GSK-3β) targets specific signaling pathways in response to distinct upstream signals. We used structural and functional studies to dissect how an upstream phosphorylation step primes the Wnt signaling component β-catenin for phosphorylation by GSK-3β and how scaffolding interactions contribute to this reaction. Our crystal structure of GSK-3β bound to a phosphoprimed β-catenin peptide confirmed the expected binding mode of the phosphoprimed residue adjacent to the catalytic site.
View Article and Find Full Text PDFWnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and Low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDF