Publications by authors named "W I J Dieleman"

Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon.

View Article and Find Full Text PDF

In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced.

View Article and Find Full Text PDF

In recent decades, many climate manipulation experiments have investigated biosphere responses to global change. These experiments typically examined effects of elevated atmospheric CO(2), warming or drought (driver variables) on ecosystem processes such as the carbon and water cycle (response variables). Because experiments are inevitably constrained in the number of driver variables tested simultaneously, as well as in time and space, a key question is how results are scaled up to predict net ecosystem responses.

View Article and Find Full Text PDF

Under elevated atmospheric CO(2) concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO(2) effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO(2) stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N.

View Article and Find Full Text PDF