Publications by authors named "W Husinsky"

Ion implantation of laser induced graphite plasma has been performed for modifications in surface, optical, electrical and structural properties of CR-39. KrF Excimer laser (248 nm, 18 ns, 120 mJ), at an irradiance of 2.5 × 10 W cm is utilized for the production of graphite plasma.

View Article and Find Full Text PDF

Two-photon induced polymerization (2PP) based 3D printing is a powerful microfabrication tool. Specialized two-photon initiators (2PIs) are critical components of the employed photosensitive polymerizable formulations. This work investigates the cooperative enhancement of two-photon absorption cross sections (σ) in a series of 1,3,5-triazine-derivatives bearing 1-3 aminostyryl-donor arms, creating dipolar, quadrupolar and octupolar push-pull systems.

View Article and Find Full Text PDF

We present an experimental technique to determine the degenerate two-photon absorption (2PA) spectra by performing a single Z-scan using a high-spectral-irradiance white light continuum (WLC) generated by a hollow core fiber. The hollow fiber was filled with Argon (Ar) gas at a pressure of 0.6 bar and was pumped with 500 mJ, 30 fs, and 800 nm pulses.

View Article and Find Full Text PDF

Both normal and abnormal sub-100-nanometer ripples (wavenumber ∼10  μm(-1)) were separately observed on Ti surfaces excited by linearly polarized IR femtosecond laser pulses at lower and higher fluences. Numerical modeling of dispersion curves for surface plasmon-polaritons on the photoexcited Ti surfaces demonstrates its surface plasmon resonance with the peak wavenumber ∼8  μm(-1) spectrally tuned by prompt surface optical response, prompt surface charging, and pre-oxidation, with normal/abnormal nanoripples appearing at its red/blue shoulders, respectively.

View Article and Find Full Text PDF

In this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs - 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL.

View Article and Find Full Text PDF