Publications by authors named "W Huai"

HIF-2α, encoded by EPAS1, plays a dominant role in regulating erythropoietin (EPO) production, maintaining the dynamic balance of erythropoiesis. Gain-of-function mutations in EPAS1 cause erythrocytosis. However, anaemia caused by EPAS1 loss-of-function mutations has been confined to only one case report, and the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Hylurgus ligniperda (Fabricius) is an important pest that attacks Pinus species in China. It impacts the vitality of local pine vegetation, reduces the ability to prevent windbreak and sand fixation, and causes ecological loss. MaxEnt and ArcGIS are used to predict and analyze the changes in suitable distribution areas of H.

View Article and Find Full Text PDF

Biological invasion is a major global problem, leading to the loss of biodiversity and species extinction, and causing huge economic losses to countries. Obolodiplosis robiniae is a major invasive forest pest that has caused economic losses in Asia and Europe. Here, the chromosome- level genome of O.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers collected 147 fungal isolates from the diseased trees and identified them as eight different species, highlighting the complex nature of the pathogens involved.
  • * Pathogenicity tests indicated that certain combinations of these fungal species caused larger stem lesions in young seedlings, confirming that the decline of the redwoods is due to a disease complex.
View Article and Find Full Text PDF

Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) are the two most prevalent polyglutamine (polyQ) neurodegenerative diseases, caused by CAG (encoding glutamine) repeat expansion in the coding region of the huntingtin (HTT) and ataxin-3 (ATXN3) proteins, respectively. We have earlier reported that the activity, but not the protein level, of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), is severely abrogated in both HD and SCA3 resulting in accumulation of double-strand breaks in patients' brain genome. While investigating the mechanistic basis for the loss of PNKP activity and accumulation of DNA double-strand breaks leading to neuronal death, we observed that PNKP interacts with the nuclear isoform of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3).

View Article and Find Full Text PDF