Publications by authors named "W Hsiao"

Precision health extends beyond the scope of precision medicine and involves a broader range of activities, including the prediction, prevention, treatment, and management of diseases. Tailored to specific populations, precision health offers personalized treatment and preventive measures considering genetics, lifestyle behaviors, social determinants of health, and environmental factors. Precision medicine focuses on the personalized treatment of diseases, whereas precision health aims to promote health and prevent diseases using tools such as big data and advanced analytics to predict health risks and prevent diseases at the population level.

View Article and Find Full Text PDF

We introduce a robust likelihood approach to inference for paired multiple binary endpoints data. One can easily implement the methodology without dealing with the model that incorporates a large number of joint probabilities of no direct relevance to the inference of interest. We present the robust score test statistic for testing the equality of two treatment effects to exemplify the utility and simplicity of the method.

View Article and Find Full Text PDF

Advancements in early detection have demonstrated the significance of biomarkers as indicators of health and disease. Traditional detection methods often face limitations, such as low sensitivity and time consumption. Fluorescence-based techniques are considered promising approaches because of their noninvasiveness and rapid response.

View Article and Find Full Text PDF

Background: Food allergies, particularly peanut (PN) allergies, are a growing concern, with fatal anaphylaxis incidents often reported. While palforzia is the sole FDA-approved drug for managing PN allergies, it is not universally effective.

Purpose: This study aimed to investigate the potential of Gynostemma pentaphyllum saponins (GpS) as a novel therapeutic agent for PN allergy through modulation of gut microbiota, addressing the limitations of current treatments.

View Article and Find Full Text PDF

Chloramphenicol (CAP), a potent antibiotic capable of inhibiting protein synthesis, presents significant challenges related to long-term dosing and its persistent leaching into the environment, raising concerns about environmental contamination and resistance development. To address this issue, we developed a reliable, low-cost, and biocompatible nanocomposite material comprising tannic acid (TA)-reduced graphene oxide (rGO) intercalated into manganese-doped tin oxide nanoparticles (MnSnO₂ NPs). The structural formation and catalytic activity of the MnSnO₂ NPs/TA-rGO nanocomposite were characterized using field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques.

View Article and Find Full Text PDF