Objective: -related neurodevelopmental disorder ( -NDD) is characterized by clinically significant variation in the gene, which encodes the obligatory GluN1 subunit of N-methyl-D-aspartate receptors (NMDARs). The identified p.Tyr647Ser (Y647S) variant - carried by a 33-year-old female with seizures and intellectual disability - is located in the M3 helix in the GluN1 transmembrane domain.
View Article and Find Full Text PDFN-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood.
View Article and Find Full Text PDFNMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear.
View Article and Find Full Text PDFThe trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an screen on a TAAR1 homology model.
View Article and Find Full Text PDFSeveral studies have found decreased levels of ω-3 polyunsaturated fatty acids in the brain and blood of schizophrenia patients. Furthermore, dietary ω-3 supplements may improve schizophrenia symptoms and delay the onset of first-episode psychosis. We used an animal model of NMDA receptor hypofunction, NR1KD mice, to understand whether changes in glutamate neurotransmission could lead to changes in brain and serum fatty acids.
View Article and Find Full Text PDF