Unlabelled: Aging is associated with progressive skin fragility, characterized in part by extracellular matrix (ECM) fragmentation. This degradation produces matrikines which have an impact on ECM rremodeling. Our group previously designed and characterized a trifunctional peptide (TFP), constituted of i) an elastokine motif (VGVAPG), able to increase the expression of matrix constituent through the stimulation of the elastin-binding protein receptor, ii) a tripeptide inhibiting matrix metalloproteinase-1 activity (GIL), and iii) a linker domain acting as a competitive substrate for urokinase (RVRL).
View Article and Find Full Text PDFSkin aging is characterized by deterioration of the dermal collagen fiber network due to both decreased collagen expression and increased collagenolytic activity. We designed and evaluated in vitro and ex vivo the efficacy of a trifunctional peptide (TFP) to restore collagen and elastin fibers. TFP was constituted of an elastokine motif (VGVAPG)3, able to increase matrix constituent expression through the stimulation of the elastin-binding protein receptor, a GIL tripeptide occupying matrix metalloproteinase-1 subsites, and a RVRL linker domain acting as a competitive substrate for urokinase.
View Article and Find Full Text PDFAtherosclerosis is a progressive multifaceted inflammatory disease affecting large- and medium-sized arteries. Typical feature of this disease is the formation and build-up of atherosclerotic plaques characterized by vascular extracellular matrix degradation and remodeling. Many studies have documented degradation of native elastin, the main extracellular matrix protein responsible for resilience and elasticity of arteries, by local release of elastases, leading to the production of elastin-derived peptides (EDP).
View Article and Find Full Text PDFHuman neutrophil elastase (HNE), a main actor in the development of chronic obstructive pulmonary diseases, has been recently involved in non-small cell lung cancer progression. It can act at several levels (i) intracellularly, cleaving for instance the adaptor molecule insulin receptor substrate-1 (IRS-1) (ii) at the cell surface, hydrolyzing receptors as CD40 (iii) in the extracellular space, generating elastin fragments i.e.
View Article and Find Full Text PDFMatrix metalloproteinase (MMP) family proteins play diverse roles in many aspects of cellular processes such as osteoblastic differentiation. Besides, mechanical forces that occur in 3D collagen gel promote the osteoblastic phenotype and accelerate matrix mineralization. Although MMPs have been involved in bone differentiation, the proteolytic cascades triggered by mechanical forces are still not well characterized.
View Article and Find Full Text PDF