Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent.
View Article and Find Full Text PDFBoth the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept and the biological realities it captures.
View Article and Find Full Text PDFOut-of-plane distortions of a cofactor molecule in a protein active site are functionally important, and in photoreceptors, it has been proposed that they are crucial for spectral tuning and energy storage in photocycle intermediates. However, these subtle structural features are often beyond the grasp of structural biology. This issue is strikingly exemplified by photoactive yellow protein: its 14 independently determined crystal structures exhibit considerable differences in the dihedral angles defining the chromophore geometry, even though most of these are at excellent resolution.
View Article and Find Full Text PDFAutomated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
April 2023
During the last century enormous progress has been made in the understanding of biological diversity, involving a dramatic shift from macroscopic to microscopic organisms. The question now arises as to whether the Natural System introduced by Carl Linnaeus, which has served as the central system for organizing biological diversity, can accommodate the great expansion of diversity that has been discovered. Important discoveries regarding biological diversity have not been fully integrated into a formal, coherent taxonomic system.
View Article and Find Full Text PDF