Motivation: Next generation sequencing technology generates high-throughput data, which allows us to detect fusion genes at both transcript and genomic levels. To detect fusion genes, the current bioinformatics tools heavily rely on paired-end approaches and overlook the importance of reads that span fusion junctions. Thus there is a need to develop an efficient aligner to detect fusion events by accurate mapping of these junction-spanning single reads, particularly when the read gets longer with the improvement in sequencing technology.
View Article and Find Full Text PDFJ Cell Biochem
October 1994
Insulin-like growth factor binding protein-3 (IGFBP-3) is the major carrier of insulin-like growth factor I and II in the circulation. IGFBP-3 is secreted by various tissues and cell lines as a glycosylated phosphoprotein. We have identified two major serine phosphorylation sites located at amino acids 111 and 113 of the human protein.
View Article and Find Full Text PDFInfoTrac TFD provides a graphical user interface (GUI) for viewing and manipulating datasets in the Transcription Factor Database, TFD. The interface was developed in Filemaker Pro 2.0 by Claris Corporation, which provides cross platform compatibility between Apple Macintosh computers running System 7.
View Article and Find Full Text PDFThe intact wild-type mouse glucocorticoid receptor has a theoretical molecular weight of approximately 96 kDa based on amino acid sequence, but on SDS-polyacrylamide gel electrophoresis it migrates as a protein of approximately 98 kDa. It is not known where the unusual primary structure or covalent modification responsible for this anomalous migration is located within the amino acid chain. In the course of examining the pattern of fragmentation of 32P-labeled glucocorticoid receptors from Chinese hamster ovary (CHO) cells containing amplified mouse receptor cDNA, we have found a localized region in the amino-terminal half of the receptor that accounts for this anomalous behavior.
View Article and Find Full Text PDFThe interaction of tumor necrosis factor alpha (TNF) with its two membrane-bound receptors initiates intracellular events in which arachidonic acid and its derivatives are involved. In HeLa cells, TNF treatment induces an arachidonic acid-selective, Ca(2+)-dependent cellular phospholipase A2 (cPLA2). By itself, TNF causes a modest increase in cPLA2 activity, but with the Ca2+ ionophore A23187 it provides a strong synergistic action.
View Article and Find Full Text PDF