Publications by authors named "W Higemoto"

The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts.

View Article and Find Full Text PDF

Nontrivial quantum states can be realized in the vicinity of the quantum critical point (QCP) in many strongly correlated electron systems. In particular, an emergence of unconventional superconductivity around the QCP strongly suggests that the quantum critical fluctuations play a central role in the superconducting pairing mechanism. However, a clear signature of the direct coupling between the superconducting pairing states and the quantum criticality has not yet been elucidated by the microscopic probes.

View Article and Find Full Text PDF

Materials with strongly correlated electrons often exhibit interesting physical properties. An example of these materials is the layered oxide perovskite SrRuO, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in SrRuO is still ongoing, a deeper understanding of the SrRuO normal state appears crucial as this is the background in which electron pairing occurs.

View Article and Find Full Text PDF

Using an intense negative muon (μ^{-}) source, we have studied the internal magnetic fields in a powder sample of magnesium hydride (MgH_{2}). By extracting the signal from the μ^{-} captured on Mg nuclei, we found that the negative muon spin rotation and relaxation (μ^{-}SR) spectra clearly showed a Kubo-Toyabe-type relaxation, which indicates a random magnetic field at the Mg site. The field distribution width obtained is very consistent with the predicted value at the Mg site estimated by dipole field calculations, supporting our claim to have observed the nuclear magnetic fields of hydrogens in MgH_{2}.

View Article and Find Full Text PDF

RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important.

View Article and Find Full Text PDF