Publications by authors named "W Henke"

The redox properties of half-sandwich rhodium complexes supported by 2,2'-bipyridyl (bpy) ligands can be readily tuned by selection of an appropriately substituted derivative of bpy, but the influences of single substituents on the properties of such complexes are not well documented, as disubstituted bpy variants are much more common. Here, the synthesis, characterization, and redox properties of two new [Cp*Rh] complexes (where Cp* is η-1,2,3,4,5-pentamethylcyclopentadienyl) supported by the uncommon mono-substituted ligands 4-chloro-2,2'-bipyridyl (mcbpy) and 4-nitro-2,2'-bipyridyl (mnbpy) are reported. Single-crystal X-ray diffraction studies and related spectroscopic experiments confirm installation of the single substituents (-Cl and -NO, respectively) on the bipyridyl ligands; the precursor monosubstituted ligands were prepared a divergent route from unsubstituted bpy.

View Article and Find Full Text PDF

The open reading frame 3a (ORF3a) is an accessory transmembrane protein that is important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (YxxΦ; where x is any amino acid and Φ is a hydrophobic amino acid with a bulky -R group). They have been implicated in the trafficking of membrane proteins to the cell plasma membrane and to intracellular organelles.

View Article and Find Full Text PDF

Oligo- and polyazulenes are attractive π-conjugated building blocks in designing advanced functional materials. Herein, we demonstrate that anchoring one or both isocyanide termini of the redox non-innocent 2,2'-diisocyano-6,6'-biazulenic π-linker (1) to the redox-active [Cr(CO)] moiety provided a convenient intramolecular redox reference for unambiguously establishing that the 6,6'-biazulenic scaffold undergoes a reversible one-step 2 reduction governed by reduction potential compression/inversion. Treatment of bis(η-naphthalene)chromium(0) with six equiv.

View Article and Find Full Text PDF
Article Synopsis
  • Protonation reactions with organometallic complexes create reactive metal hydrides, but some complexes with η-pentamethylcyclopentadienyl (Cp*) ligands can undergo unique ligand-centered protonation, leading to the formation of the Cp*H ligand.
  • Time-resolved pulse radiolysis (PR) and stopped-flow spectroscopy were used to study the kinetics and details of these proton transfer processes, focusing on the complex Cp*Rh(bpy) as a model.
  • The research uncovered that initial protonation of Cp*Rh(bpy) results in an elusive hydride complex, which can undergo tautomerization and highlights the active role of protonated intermediates in hydrogen evolution catalysis, offering insights for developing better catalytic systems
View Article and Find Full Text PDF

The SARS-CoV-2 virion is composed of four structural proteins: spike (S), nucleocapsid (N), membrane (M), and envelope (E). E spans the membrane a single time and is the smallest, yet most enigmatic of the structural proteins. E is conserved among coronaviruses and has an essential role in virus-mediated pathogenesis.

View Article and Find Full Text PDF