Subunit-selective proteasome inhibitors are valuable tools to assess the biological and medicinal relevance of individual proteasome active sites. Whereas the inhibitors for the β1c, β1i, β5c, and β5i subunits exploit the differences in the substrate-binding channels identified by X-ray crystallography, compounds selectively targeting β2c or β2i could not yet be rationally designed because of the high structural similarity of these two subunits. Here, we report the development, chemical synthesis, and biological screening of a compound library that led to the identification of the β2c- and β2i-selective compounds LU-002c (4; IC β2c: 8 nM, IC β2i/β2c: 40-fold) and LU-002i (5; IC β2i: 220 nM, IC β2c/β2i: 45-fold), respectively.
View Article and Find Full Text PDFBy N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated the mutant mouse line TUB6 that is characterised by severe combined immunodeficiency (SCID) and systemic sterile autoinflammation in homozygotes, and a selective T cell defect in heterozygotes. The causative missense point mutation results in the single amino acid exchange G170W in multicatalytic endopeptidase complex subunit-1 (MECL-1), the β2i-subunit of the immuno- and thymoproteasome. Yeast mutagenesis and crystallographic data suggest that the severe TUB6-phenotype compared to the MECL-1 knockout mouse is caused by structural changes in the C-terminal appendage of β2i that prevent the biogenesis of immuno- and thymoproteasomes.
View Article and Find Full Text PDFSelective inhibition of the immunoproteasome is a promising approach towards the development of immunomodulatory drugs. Recently, a class of substituted thiazole compounds that combine a nonpeptidic scaffold with the absence of an electrophile was reported in a patent. Here, we investigated the mode of action of the lead compound by using a sophisticated chimeric yeast model of the human immunoproteasome for structural studies.
View Article and Find Full Text PDFInhibition of the immunoproteasome subunit β5i alleviates autoimmune diseases in preclinical studies and represents a promising new anti-inflammatory therapy. However, the lack of structural data on the human immunoproteasome still hampers drug design. Here, we systematically determined the potency of seven α' β' epoxyketone inhibitors with varying N-caps and P3-stereochemistry for mouse/human β5c/β5i and found pronounced differences in their subunit and species selectivity.
View Article and Find Full Text PDFBiogenesis of the 20S proteasome is tightly regulated. The N-terminal propeptides protecting the active-site threonines are autocatalytically released only on completion of assembly. However, the trigger for the self-activation and the reason for the strict conservation of threonine as the active site nucleophile remain enigmatic.
View Article and Find Full Text PDF