Eur J Pharmacol
September 2023
Previous studies have demonstrated the role of γ-aminobutyric acid type B (GABA) receptors in skin-related conditions and pain. However, most studies have focused on the main effects of GABA on the central nervous system. Therefore, this study has aimed to determine the potential topical anti-inflammatory and anti-proliferative effects of baclofen cream in an inflammatory skin disease model.
View Article and Find Full Text PDFT cells are critical mediators of antitumor immunity and a major target for cancer immunotherapy. Antibody blockade of inhibitory receptors such as PD-1 can partially restore the activity of tumor-infiltrating lymphocytes (TILs). However, the activation signals required to promote TIL responses are less well characterized.
View Article and Find Full Text PDFUVR and immunosuppression are major risk factors for cutaneous squamous cell carcinoma (cSCC). Regulatory T cells promote cSCC carcinogenesis, and in other solid tumors, infiltrating regulatory T cells and CD8 T cells express ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) (also known as CD39), an ectoenzyme that catalyzes the rate-limiting step in converting extracellular adenosine triphosphate (ATP) to extracellular adenosine (ADO). We previously showed that extracellular purine nucleotides influence DNA damage repair.
View Article and Find Full Text PDFTissue-resident γδ T cells form the first line of defense at barrier surfaces where they survey host tissue for signs of stress or damage. Following recognition of injury, γδ T cells play a crucial role in the wound-healing response through the production of growth factors and cytokines that promote proliferation in surrounding epithelial cells. To initiate this response, γδ T cells require interactions with a variety of epithelial-expressed costimulatory molecules in addition to primary signaling through their TCR.
View Article and Find Full Text PDFChronic wounds represent a growing clinical problem for which limited treatment strategies exist. Defects in immune cell-mediated healing play an important role in chronic wound development, presenting an attractive clinical target in the treatment of chronic wounds. However, efforts to improve healing through the application of growth factors and cytokines have been limited by the rapid degradation and diffusion of these molecules in the wound environment.
View Article and Find Full Text PDF