Determining SARS-CoV-2 immunity is critical to assess COVID-19 risk and the need for prevention and mitigation strategies. We measured SARS-CoV-2 Spike/Nucleocapsid seroprevalence and serum neutralizing activity against Wu01, BA.4/5 and BQ.
View Article and Find Full Text PDFPurpose: To evaluate the accuracy and cost benefit of a rapid molecular point-of-care testing (POCT) device detecting COVID-19 within a traumatological emergency department.
Background: Despite continuous withdrawal of COVID-19 restrictions, hospitals will remain particularly vulnerable to local outbreaks which is reflected by a higher institution-specific basic reproduction rate. Patients admitted to the emergency department with unknown COVID-19 infection status due to a- or oligosymptomatic COVID-19 infection put other patients and health care workers at risk, while fast diagnosis and treatment is necessary.
Membrane fusion constitutes an essential step in the replication cycle of numerous viral pathogens, hence it represents an important druggable target. In the present study, we established a virus-free, stable reporter fusion inhibition assay (SRFIA) specifically designed to identify compounds interfering with virus-induced membrane fusion. The dual reporter assay is based on two stable Vero cell lines harboring the third-generation tetracycline (Tet3G) transactivator and a bicistronic reporter gene cassette under the control of the tetracycline responsive element (TRE3G), respectively.
View Article and Find Full Text PDFSARS-CoV-2 infection can cause severe pneumonia (COVID-19). There is evidence that patients with comorbidities are at higher risk of a severe disease course. The role of immunosuppression in the disease course is not clear.
View Article and Find Full Text PDF