Pollen tubes are used as a model in the study of plant morphogenesis, cellular differentiation, cell wall biochemistry, biomechanics, and intra- and intercellular signaling. For a "systems-understanding" of the bio-chemo-mechanics of tip-polarized growth in pollen tubes, the need for a versatile, experimental assay platform for quantitative data collection and analysis is critical. We introduce a Lab-on-a-Chip (LoC) concept for high-throughput pollen germination and pollen tube guidance for parallelized optical and mechanical measurements.
View Article and Find Full Text PDFWith semiconductor structures reaching the nanometer scale, heat conductivity measurements on the mesoscopic range of some tens of nanometers become an increasingly important aspect for the further improvement in digital processing and storage. Also the attempt to use atomic-force microscopy (AFM) technology for high-density data storage by writing information bits as nanometer-sized indentations into a polymer substrate with a heated cantilever tip asks for a careful investigation of the nano-scale heat-conductivity properties of polymers. Furthermore, in many AFM imaging applications, heat conductivity can provide additional information about the material the imaged structures consist of.
View Article and Find Full Text PDF