Graphene-based supercapacitors have gained significant attention due to their exceptional energy storage capabilities. Despite numerous research efforts trying to improve the performance, the challenge of experimentally elucidating the nanoscale-interface molecular characteristics still needs to be tackled for device optimizations in commercial applications. To address this, we have conducted a series of experiments using substrate-free graphene field-effect transistors (SF-GFETs) and oxide-supported graphene field-effect transistors (OS-GFETs) to elucidate the graphene-electrolyte interfacial arrangement and corresponding capacitance under different surface potential states and ionic concentration environments.
View Article and Find Full Text PDFUltrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.
View Article and Find Full Text PDFAmorphous oxide semiconductors (AOS) are pivotal for next-generation electronics due to their high electron mobility and excellent optical properties. However, InO, a key material in this family, encounters significant challenges in balancing high mobility and effective switching as its thickness is scaled down to nanometer dimensions. The high electron density in ultra-thin InO hinders its ability to turn off effectively, leading to a critical trade-off between mobility and the on-current (I)/off-current (I) ratio.
View Article and Find Full Text PDFPurpose: To measure the out-of-field doses for various treatment planning techniques and assess the impact on fetal dose with and without the use of custom shielding.
Materials And Methods: A total of six treatment plans were generated with different treatment techniques such as 3-dimensional conformal radiation therapy (3DCRT), intensity modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), utilizing both 6 MV flattened beams and flattening filter-free (FFF) beams. The measurements were carried out both out-of-field at the surface and at depth to assess the dose reduction achieved by removing the flattening filter and incorporating shielding.