Achieving low thermal conductivity and high mechanical strength presents a material design challenge due to intrinsic trade-offs, such as the aerogel's porosity, impeding applications in construction, industry, and aerospace. This study presents a composite that incorporates a silica aerogel within a thermally expanded 2D layered vermiculite matrix. This design overcomes limitations imposed by van der Waals bonding lengths, typically less than 10 Å, which hinder aerogel integration with van der Waals crystals.
View Article and Find Full Text PDFRadiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.
View Article and Find Full Text PDFDistinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI).
View Article and Find Full Text PDFAs the size of the chemical industry increases, chemical accidents continue to occur as the handling volume of chemicals also increases. Currently, in the case of a chemical accident, the prediction of the scope of influence mainly analyzes the scope of the impact on a single substance in the accident and does not consider the scope of the decomposition and reaction products. Nitric acid, one of the many chemical accidents, produces nitrogen dioxide, which is harmful when decomposed.
View Article and Find Full Text PDFThe growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li/Mg selectivity, enhancing Li ion selectivity over Na ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties.
View Article and Find Full Text PDF