Publications by authors named "W H Majoros"

Variation in the non-coding genome represents an understudied mechanism of disease and it remains challenging to predict if single nucleotide variants, small insertions and deletions, or structural variants in non-coding genomic regions will be detrimental. Our approach using complementary RNA-seq and targeted long-read DNA sequencing can prioritize identification of non-coding variants that lead to disease via alteration of gene splicing or expression. We have identified a patient with primary ciliary dyskinesia with a pathogenic coding variant on one allele of the SPAG1 gene, while the second allele appears normal by whole exome sequencing despite an autosomal recessive inheritance pattern.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advances in single-cell RNA sequencing (scRNA-seq) and CRISPR technology allow researchers to explore how genetic changes affect gene expression in a high-throughput manner.
  • A key challenge in these experiments is managing "ambient gRNAs," which are extraneous genetic markers from other cells that can skew results if not filtered out properly.
  • The study introduces a tool called CLEANSER, which effectively distinguishes and removes ambient gRNA noise, improving the accuracy of gRNA-cell assignments and enhancing the quality of differential gene expression analyses.
View Article and Find Full Text PDF

Motivation: Allele-specific expression (ASE) analyses aim to detect imbalanced expression of maternal versus paternal copies of an autosomal gene. Such allelic imbalance can result from a variety of cis-acting causes, including disruptive mutations within one copy of a gene that impact the stability of transcripts, as well as regulatory variants outside the gene that impact transcription initiation. Current methods for ASE estimation suffer from a number of shortcomings, such as relying on only one variant within a gene, assuming perfect phasing information across multiple variants within a gene, or failing to account for alignment biases and possible genotyping errors.

View Article and Find Full Text PDF

Targeted gene-editing strategies have emerged as promising therapeutic approaches for the permanent treatment of inherited genetic diseases. However, precise gene correction and insertion approaches using homology-directed repair are still limited by low efficiencies. Consequently, many gene-editing strategies have focused on removal or disruption, rather than repair, of genomic DNA.

View Article and Find Full Text PDF

Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted.

View Article and Find Full Text PDF