Publications by authors named "W H Flood"

Background And Purpose: During a season of high school football, adolescents with actively developing brains experience a considerable number of head impacts. Our aim was to determine whether repetitive head impacts in the absence of a clinically diagnosed concussion during a season of high school football produce changes in cognitive performance or functional connectivity of the salience network and its central hub, the dorsal anterior cingulate cortex.

Materials And Methods: Football players were instrumented with the Head Impact Telemetry System during all practices and games, and the helmet sensor data were used to compute a risk-weighted exposure metric (RWEcp), accounting for the cumulative risk during the season.

View Article and Find Full Text PDF

Magnetoencephalography (MEG) measures magnetic fluctuations in the brain generated by neural processes, some of which, such as cardiac signals, are generally removed as artifacts and discarded. However, heart rate variability (HRV) has long been regarded as a biomarker related to autonomic function, suggesting the cardiac signal in MEG contains valuable information that can provide supplemental health information about a patient. To enable access to these ancillary HRV data, we created an automated extraction tool capable of capturing HRV directly from raw MEG data with artificial intelligence.

View Article and Find Full Text PDF

This study evaluated head impact exposure (HIE) metrics in relation to individual-level determinants of HIE. Youth (n = 13) and high school (n = 21) football players were instrumented with the Head Impact Telemetry (HIT) system during one season. Players completed the Trait-Robustness of Self-Confidence Inventory (TROSCI), Sports Climate Questionnaire (SCQ), and Competitive Aggressiveness and Anger Scale (CAAS), measuring self-confidence, perceived coach support, and competitive aggressiveness, respectively.

View Article and Find Full Text PDF

Objective: There is a growing body of literature informing efforts to improve the safety of football; however, research relating on-field activity to head impacts in youth football is limited. Therefore, the objective of this study was to compare head impact exposure (HIE) measured in game plays among 3 youth football teams.

Methods: Head impact and video data were collected from athletes (ages 10-13 years) participating on 3 youth football teams.

View Article and Find Full Text PDF

Objective: Limiting contact in football practice can reduce the number of head impacts a player receives, but further research is needed to inform the modification of optimal drills that mitigate head impact exposure (HIE) while the player develops the skills needed to safely play the game. This study aimed to compare HIE in practice drills among 6 youth football teams and to evaluate the effect of a team on HIE.

Methods: On-field head impact data were collected from athletes (ages 10–13 years) playing on 6 local youth football teams (teams A–F) during all practices using the Head Impact Telemetry System.

View Article and Find Full Text PDF