Publications by authors named "W H Dragowska"

The cysteine protease ATG4B is a key component of the autophagy machinery, acting to proteolytically prime and recycle its substrate MAP1LC3B. The roles of ATG4B in cancer and other diseases appear to be context dependent but are still not well understood. To help further explore ATG4B functions and potential therapeutic applications, we employed a chemical biology approach to identify ATG4B inhibitors.

View Article and Find Full Text PDF

CX-5461 is currently in Phase I/II clinical trials for advanced hematologic malignancies and triple negative or BRCA-deficient breast cancer. The compound is currently administered to patients intravenously (i.v.

View Article and Find Full Text PDF

Clioquinol (CQ) is an FDA-approved topical antifungal agent known to kill cancer cells. This facilitated the initiation of clinical trials in patients with refractory hematologic malignancies. These repurposing efforts were not successful; this was likely due to low intracellular levels of the drug owing to poor absorption and rapid metabolism upon oral administration.

View Article and Find Full Text PDF

Insensitivity to platinum, either through inherent or acquired resistance, is a major clinical problem in the treatment of many solid tumors. Here, we explored the therapeutic potential of diethyldithiocarbamate (DDC), pyrithione (Pyr), plumbagin (Plum), 8-hydroxyquinoline (8-HQ), clioquinol (CQ) copper complexes in a panel of cancer cell lines that differ in their sensitivity to platins (cisplatin/carboplatin) using a high-content imaging system. Our data suggest that the copper complexes were effective against both platinum sensitive (IC ~ 1 μM platinum) and insensitive (IC > 5 μM platinum) cell lines.

View Article and Find Full Text PDF

Copper diethyldithiocarbamate (Cu(DDC)) is the active anticancer agent generated when disulfiram (DSF) is provided in the presence of copper. To date, research directed toward repurposing DSF as an anticancer drug has focused on administration of DSF and copper in combination, efforts that have proven unsuccessful in clinical trials. This is likely due to the inability to form Cu(DDC) at relevant concentrations in regions of tumor growth.

View Article and Find Full Text PDF