The organizational principles of nephronal segments are based on longstanding anatomical and physiological attributes that are closely linked to the homeostatic functions of the kidney. Novel molecular approaches have recently uncovered layers of deeper signatures and states in tubular cells that arise at various timepoints on the spectrum between health and disease. For example, a dedifferentiated state of proximal tubular cells with mesenchymal stemness markers is frequently seen after injury.
View Article and Find Full Text PDFStimulated Raman scattering (SRS) microscopy is a powerful label-free imaging technique that probes the vibrational response of chemicals with high specificity and sensitivity. High-power, quantum-enhanced SRS microscopes have been recently demonstrated and applied to polymers and biological samples. Quantum correlations, in the form of squeezed light, enable the microscopes to operate below the shot noise limit, enhancing their performance without increasing the illumination intensity.
View Article and Find Full Text PDFWhispering Gallery Mode (WGM) optomechanical resonators are a promising technology for the simultaneous control and measurement of optical and mechanical degrees of freedom at the nanoscale. They offer potential for use across a wide range of applications such as sensors and quantum transducers. Double-disk WGM resonators, which host strongly interacting mechanical and optical modes co-localized around their circumference, are particularly attractive due to their high optomechanical coupling.
View Article and Find Full Text PDFEndoscopic and biopsy findings have identified two distinct phenotypes among individuals with calcium oxalate (CaOx) kidney stones. One phenotype exhibits normal renal papillae but shows interstitial mineral deposition, known as Randall's plaque. The other phenotype presents with collecting duct plugging and a higher incidence of loss of papilla tissue mass.
View Article and Find Full Text PDF