Publications by authors named "W Guba"

Aberrant activation of NLRP3 due to persistent tissue damage, misfolded proteins or crystal deposits has been linked to multiple chronic inflammatory disorders such as cryopyrin-associated periodic syndrome (CAPS), neurodegenerative diseases, gouty arthritis, and numerous others. Hence, there has been an increasing interest in NLRP3 inhibitors as therapeutics. A first generation of NLRP3 inhibitors bearing a sulfonylurea core such as MCC950 (developed by Pfizer) were discovered by phenotypic screening, however their mode of action was only elucidated later.

View Article and Find Full Text PDF

The diversity of physiological roles of the endocannabinoid system has turned it into an attractive yet elusive therapeutic target. However, chemical probes with various functionalities could pave the way for a better understanding of the endocannabinoid system at the cellular level. Notably, inverse agonists of CBR - a key receptor of the endocannabinoid system - lagged behind despite the evidence regarding the therapeutic potential of its antagonism.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) is a critical regulatory network composed of endogenous cannabinoids (eCBs), their synthesizing and degrading enzymes, and associated receptors. It is integral to maintaining homeostasis and orchestrating key functions within the central nervous and immune systems. Given its therapeutic significance, we have launched a series of drug discovery endeavors aimed at ECS targets, including peroxisome proliferator-activated receptors (PPARs), cannabinoid receptors types 1 (CB1R) and 2 (CB2R), and monoacylglycerol lipase (MAGL), addressing a wide array of medical needs.

View Article and Find Full Text PDF

Introduction: Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents.

View Article and Find Full Text PDF
Article Synopsis
  • The cannabinoid receptor type 1 (CBR) plays a key role in various bodily functions, including appetite, pain, memory, and body temperature regulation, but our understanding of its cellular signaling and dynamics is limited.
  • Researchers developed new fluorescent probes for CBR by using a modular design approach that centers around a diethyl glycine-based building block, making synthesis easier and more efficient.
  • Validation of these probes through various assays supports their potential use in real-time imaging studies to explore CBR's localization, movement, and effects in different diseases.
View Article and Find Full Text PDF