The mechanisms governing adipose tissue macrophage (ATM) metabolic adaptation during diet-induced obesity (DIO) are poorly understood. In obese adipose tissue, ATMs are exposed to lipid fluxes, which can influence the activation of specific inflammatory and metabolic programs and contribute to the development of obesity-associated insulin resistance and other metabolic disorders. In the present study, we demonstrate that the membrane ATP-binding cassette g1 (Abcg1) transporter controls the ATM functional response to fatty acids (FAs) carried by triglyceride-rich lipoproteins, which are abundant in high-energy diets.
View Article and Find Full Text PDFAims: Low cholesterol efflux capacity and elevated levels of Interleukin-1ß (IL-1ß) are both associated with residual cardiovascular risk in patients with acute myocardial infarction (MI) and may be used as new biomarkers to identify patients at higher cardiovascular risk.
Methods: We evaluated potential synergetic effect of cholesterol efflux capacity and IL-1ß on recurrent major adverse cardiovascular events (MACE) at one-year in 2012 patients with acute ST- segment elevation MI who underwent primary percutaneous coronary intervention. In addition, we evaluated the contribution to residual risk of HDL biological functions from 20 patients of the two extreme subgroups, focusing on cholesterol efflux capacity and anti-inflammatory properties.
Background: Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation.
View Article and Find Full Text PDFBackground: The capacity of high-density lipoprotein cholesterol (HDL) to acquire free cholesterol (FC) from triglyceride-rich lipoproteins during lipoprotein lipase-dependent lipolysis in a process of reverse remnant cholesterol transport, has been proposed as a key biological function of HDL particles that underlies the U-shaped relationship between HDLcholesterol and cardiovascular diseases. Although reverse remnant cholesterol transport has been evaluated in a fasting state, it has never been explored under nonfasting conditions.
Methods And Results: FC transfer was evaluated in healthy men (n=78) before and throughout the postprandial phase up to 8 hours after consumption of a test meal.