Publications by authors named "W Glenn Kerrick"

Cardiac muscle expresses three neuronal nitric oxide synthase (nNOS) splice variants: nNOSα, nNOSμ and nNOSβ. The functions of these nNOS splice variants in cardiac muscle, particularly myofilament-associated nNOSβ are unclear. To decipher cardiac nNOS splice variant function we investigated myofilament function and intracellular calcium and force transients in demembranated and intact papillary muscles from two lines of nNOS knockout mice.

View Article and Find Full Text PDF

Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered.

Results: GSNOR null (GSNOR) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ.

View Article and Find Full Text PDF

The human cardiac troponin I (hcTnI) mutation R145W has been associated with restrictive cardiomyopathy. In this study, simultaneous measurements of ATPase activity and force in skinned papillary fibers from hcTnI R145W transgenic mice (Tg-R145W) were explored. Tg-R145W fibers showed an approximately 13-16% increase in maximal Ca(2+)-activated force and ATPase activity compared to hcTnI wild-type transgenic mice.

View Article and Find Full Text PDF

To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Delta43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Delta43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Delta43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge.

View Article and Find Full Text PDF

Transgenic (Tg) mice expressing approximately 95% of the D166V (aspartic acid to valine) mutation in the ventricular myosin regulatory light chain (RLC) shown to cause a malignant familial hypertrophic cardiomyopathy (FHC) phenotype were generated, and the skinned and intact papillary muscle fibers from the Tg-D166V mice were examined using a Guth muscle research system. A large increase in the Ca(2+) sensitivity of force and ATPase (Delta pCa(50)>0.25) and a significant decrease in maximal force and ATPase were observed in skinned muscle fibers from Tg-D166V mice compared with control mice.

View Article and Find Full Text PDF