High-resolution collinear laser spectroscopy has been performed on singly charged ions of U at the IGISOL facility of the Accelerator Laboratory, University of Jyväskylä, in Finland. Ten ionic transitions from the and ground and first excited states were measured in the 300 nm wavelength range, improving the precision of the hyperfine parameters of the lower states in addition to providing newly measured values for the upper levels. Isotope shifts of the analyzed transitions are also reported for U with respect to U.
View Article and Find Full Text PDFCollinear laser spectroscopy was performed on the isomer of the aluminium isotope ^{26m}Al. The measured isotope shift to ^{27}Al in the 3s^{2}3p ^{2}P_{3/2}^{○}→3s^{2}4s ^{2}S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of ^{26m}Al, resulting in R_{c}=3.130(15) fm.
View Article and Find Full Text PDFHigh-precision hyperfine structure measurements were performed on stable, singly-charged [Formula: see text]Co ions at the IGISOL facility in Jyväskylä, Finland using the collinear laser spectroscopy technique. A newly installed light collection setup enabled the study of transitions in the 230 nm wavelength range from low-lying states below 6000 cm[Formula: see text]. We report a 100-fold improvement on the precision of the hyperfine A parameters, and furthermore present newly measured hyperfine B paramaters.
View Article and Find Full Text PDFIn spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics. The indium isotopes are considered a textbook example of this phenomenon, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system.
View Article and Find Full Text PDF