In high definition mapping of the plasmonic patterns on the surfaces of nanostructures, the diffraction limit of light remains an important obstacle. Here we demonstrate that this diffraction limit can be completely circumvented. We show that upon illuminating nanostructures made of nickel and palladium, the resulting surface-plasmon pattern is imprinted on the structures themselves; the hotspots (regions of local field enhancement) are decorated with overgrowths, allowing for their subsequent imaging with scanning-probe techniques.
View Article and Find Full Text PDFWe investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time-dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e.
View Article and Find Full Text PDFWe have applied the surface-sensitive nonlinear optical technique of magnetization-induced second harmonic generation (MSHG) to plasmonic, magnetic nanostructures made of Ni. We show that surface plasmon contributions to the MSHG signal can reveal the direction of the magnetization. Both the plasmonic and the magnetic nonlinear optical responses can be tuned; our results indicate novel ways to combine nanophotonics, nanoelectronics, and nanomagnetics and suggest the possibility for large magneto-chiral effects in metamaterials.
View Article and Find Full Text PDFIn optics, chirality is typically associated with circularly polarized light. Here we present a novel way to detect the handedness of chiral materials with linearly polarized light. We performed Second Harmonic Generation (SHG) microscopy on G-shaped planar chiral nanostructures made of gold.
View Article and Find Full Text PDF