Publications by authors named "W Gelletly"

The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay.

View Article and Find Full Text PDF

A new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our total absorption gamma-ray spectroscopy measurements performed during the last decade. For the first time, the spectral measurements from the Daya Bay experiment are compared with the antineutrino energy spectrum computed with the updated summation method without any renormalization.

View Article and Find Full Text PDF

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb β decays have been determined using the total absorption γ-ray spectroscopy technique.

View Article and Find Full Text PDF

In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from ^{67}Kr. At the same time, no evidence for 2p emission of ^{59}Ge and ^{63}Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to ^{67}Kr as being the best new candidate among the three for two-proton radioactivity.

View Article and Find Full Text PDF

The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution.

View Article and Find Full Text PDF