Geometries that replicate the behavior of metal nanostructures at much lower frequencies via texturing surfaces so they will support a surface wave have been a central pillar of metamaterials research. However, previous work has focused largely on geometries that can be reduced to symmetries in one or two dimensions, such as strips, flat planes, and cylinders. Shapes with isotropic responses in three dimensions are important for applications, such as radar scattering and the replication of certain nanoscale behaviors.
View Article and Find Full Text PDFTemperature sensors are one of the most fundamental sensors and are found in industrial, environmental, and biomedical applications. The traditional approach of reading the resistive response of Positive Temperature Coefficient thermistors at DC hindered their adoption as wide-range temperature sensors. Here, we present a large-area thermistor, based on a flexible and stretchable short carbon fibre incorporated Polydimethylsiloxane composite, enabled by a radio frequency sensing interface.
View Article and Find Full Text PDFBecause of the shortcomings associated with their scattering patterns, both the chessboard and cubic phased metasurfaces show non-perfect diffusion and hence sub-optimal radar cross section reduction (RCSR) properties. This paper presents a novel and powerful hybrid RCSR design approach for diffusive scattering by combining the unique attributes of cubic phase and chessboard phase profiles. The hybrid phase distribution is achieved by simultaneously imposing two distinct phase profiles (chessboard and cubic) on the hybrid metasurface area with the aid of geometric phase theory to further enhance the diffusive scattering and RCSR.
View Article and Find Full Text PDFCoding metasurfaces for diffusion scattering of electromagnetic (EM) waves are important for stealth applications and have recently attracted researchers in physics and engineering communities. Typically, the available design approaches of coding metasurfaces lack a coding sequence design formula and sometimes cannot simultaneously ensure uniform diffusion and low reflected power intensity without extensive computational optimization. To the authors' best knowledge, the diffusion and radar-cross-section reduction (RCSR) of 2D axicon metasurfaces for cloaking and stealth applications have not been explored before.
View Article and Find Full Text PDFIn this report, a novel fabrication method, based on casting Field's metal inside dielectric molds made via fused deposition modeling, is presented. Fused deposition modeling (FDM) has become one of the most common rapid prototyping methods. Whilst it generally produces good quality mechanical structures in thermoplastics, few reliable methods have been demonstrated that produce good quality 3D electrically conductive structures.
View Article and Find Full Text PDF