Publications by authors named "W G Starkey"

Background: Infectious Pancreatic Necrosis (IPN) is a highly contagious birnavirus disease of farmed salmonid fish, which often causes high levels of morbidity and mortality. A large host genetic component to resistance has been previously described for Atlantic salmon (Salmo salar L.), which mediates high mortality rates in some families and zero mortality in others.

View Article and Find Full Text PDF

Infectious pancreatic necrosis (IPN) is a viral disease with a significant negative impact on the global aquaculture of Atlantic salmon. IPN outbreaks can occur during specific windows of both the freshwater and seawater stages of the salmon life cycle. Previous research has shown that a proportion of the variation seen in resistance to IPN is because of host genetics, and we have shown that major quantitative trait loci (QTL) affect IPN resistance at the seawater stage of production.

View Article and Find Full Text PDF

The pepscan procedure was used to identify betanodavirus B-cell epitopes recognized by neutralizing mouse monoclonal antibodies (MAbs) and serum samples obtained from sea bass, Dicentrarchus labrax, naturally infected with betanodavirus. Pepscan was performed with a panel of thirty-four 12-mer synthetic peptides that mimicked the entire betanodavirus capsid protein. Sea bass serum samples reacted strongly with three regions of the capsid protein comprising amino acid residues 1-32, 91-162 and 181-212.

View Article and Find Full Text PDF

We have developed a real-time nucleic acid sequence based amplification (NASBA) procedure for detection of infectious salmon anaemia virus (ISAV). Primers were designed to target a 124 nucleotide region of ISAV genome segment 8. Amplification products were detected in real-time with a molecular beacon (carboxyfluorescin [FAM]-labelled and methyl-red quenched) that recognised an internal region of the target amplicon.

View Article and Find Full Text PDF

Nucleic acid sequence based amplification (NASBA) is an isothermal nucleic acid amplification procedure based on target-specific primers and probes, and the co-ordinated activity of 3 enzymes: AMV reverse transcriptase, RNase H, and T7 RNA polymerase. We have developed a real-time NASBA procedure for detection of piscine nodaviruses, which have emerged as major pathogens of marine fish. Viral RNA was isolated by guanidine thiocyanate lysis followed by purification on silica particles.

View Article and Find Full Text PDF