Publications by authors named "W G Reese"

Damage evolution during fracture of metals is a critical factor in determining the reliability and integrity of the infrastructure that the society relies upon. However, experimental techniques for directly observing these phenomena have remained challenged. We have addressed this gap by developing a correlative microscopy framework combining high-resolution hyperspectral electron microscopy with laboratory x-ray microtomography (XMT) and applied it to study fracture mechanisms in a steel inclusion system.

View Article and Find Full Text PDF

Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration.

View Article and Find Full Text PDF

Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units.

View Article and Find Full Text PDF

Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells' focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions.

View Article and Find Full Text PDF

Importance: Isolated sulfite oxidase deficiency (ISOD) causes severe intellectual disability, epilepsy, and shortened life expectancy. Intractable seizures are invariable in children with ISOD; however, to our knowledge, infantile spasms with a corresponding hypsarrhythmia pattern on electroencephalogram have never been reported. In addition, the nonepileptic paroxysmal movement disorder hyperekplexia has not previously been reported with ISOD.

View Article and Find Full Text PDF